If it's not what You are looking for type in the equation solver your own equation and let us solve it.
43350x^2-515550x-408900=0
a = 43350; b = -515550; c = -408900;
Δ = b2-4ac
Δ = -5155502-4·43350·(-408900)
Δ = 336695062500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336695062500}=\sqrt{562500*598569}=\sqrt{562500}*\sqrt{598569}=750\sqrt{598569}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-515550)-750\sqrt{598569}}{2*43350}=\frac{515550-750\sqrt{598569}}{86700} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-515550)+750\sqrt{598569}}{2*43350}=\frac{515550+750\sqrt{598569}}{86700} $
| 2e+19=19 | | 4(9n-5)=33-3n | | 7=-8+5u | | -18.57-11.2m=15.27-7.6m | | 6x-10x=6-2x | | y=-6400+130X | | 3b=47 | | 3z+7=8z+3= | | 6-2r=4r | | x^2+x-2450=0 | | -5+x=-4=2x | | .45m-900=90m | | 2-7c=20-5c | | 10n-7=n | | 13+2x=-27 | | 3n+6n=16=7n | | −4x+1/2=81/2 | | 15+18d=19d | | −2/3x=10 | | 3/4x+5=3x-4 | | -20-19q=-20q | | 2(2x+3=16 | | 3(3x-4)=2(5x-8) | | 8y+y=6y+16 | | 1/4x=62.5 | | 3^-1=n | | 18-17p=-14p | | 2^-2=n | | 2t+7=t-3 | | 7−3f=8−2f | | 45x+-22=112=32x-45=122 | | 7−3f=8−2f7−3f |